Cross-Coupling between Functionalized Alkylcopper Reagents and Functionalized Alkyl Halides

Charles E. Tucker and Paul Knochel'

Philipps- Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, 3550 Marburg, Germany

Received June *1,* **1993**

Summary: Functionalized dialkylzincs treated with $Me₂Cu(CN)(MgCl)₂$ in DMPU undergo highly chemoselective cross-coupling reactions with functionalized alkyl iodides or benzylic bromides providing polyfunctional products in good to excellent yields.

The cross-coupling of organometallics $\text{FG}^1 \text{R}^1 \text{M}$ (M = ZnX, SnR3, AlRz, **B(OH)z,** etc.)' with organic halides $FG²R²X$ catalyzed by late transition metal complexes (of Pd, Ni) is an excellent method for forming a carbon-carbon bond between functionalized substrates. This reaction proceeds smoothly **as** long **as** at least one group (FGIR1 or FG²R²⁾ bears an unsaturation. In contrast, the Pdcatalyzed cross-coupling reaction between alkyl organometallics and alkyl halides gives only low yields.^{2,3} Although alkyl cuprates derived from lithium or magnesium organometallics undergo an efficient substitution reaction with alkyl halides or tosylates,⁴ their preparation from organolithiums or Grignard reagenta precludes the presence of many functionalities⁵ in these compounds and therefore limits the synthetic potential of this crosscoupling.

$$
(FG^{1}R^{1})_{2}Zn \xrightarrow[(2) FG^{2}R^{2}X 3, DMPU, -78 to 0 °C, 2 h]{(1) Me_{2}Cu(CN)(MgCl)_{2}} FG^{1}R^{1}R^{2}FG^{2} (1)
$$

The copper species FGRCu(CN)ZnI prepared from alkylzinc halides 6 tolerate the presence of many func-

(2) The slow reductive elimination of **bis-(alkyl)palladium(II)** and the competitive β -hydride elimination contribute to the low efficiency of this reaction: (a) Yuan, K.; Scott, W. J. *Tetrahedron Lett.* **1989,30,4779.** (b) Yuan, K.; Scott, W. J. *J. Org. Chem.* **1990,** *55,* **6188.** (c) Brown, J. M.; Cooley, N. A. *Organometallics* **1990,9,353.** (d) Brown, J. M.; Cooley, N. A. *Chem. Rev.* **1988,88,1031.** See **aleo:** (e) Castle, P. L.; Widdowson, D.

A. *Tetrahedron Lett.* **1986,27. 6013.** coupling reaction has been reported using organoboranes: (a) Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 691. (b) Nomoto, **Y.;** Miyaura, N.; Suzuki, A. *Synlett* **1992, 727.**

(4) For excellent review articles see: (a) Posner, G. H. Org. React.
1972, 19, 1. (b) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135.
See also: (c) Tamura, M.; Kochi, J. Synthesis 1971, 303. (d) Tamura, M.; Kochi,

(5) Some reactions using either functionalized copper reagents or
functionalized organic halides have been reported: (a) Nunomoto, S.; J. F.; Villibras, J.; Scott, F. *Tetrahedron Lett.* **1977,3263.** (c), Baer, T. A.; Camey, R. L. *Tetrahedron Lett* **1976,4697.**

(6) (a) Knochel, P.; Yeh, M. C. P.; Berk, **S.** C.; Talbert, *J. Org. Chem.* **1988,53,2390.** (b) Knochel, P.; Rozema, M. J.;Tucker, C. E.; Retherford, C.; Furlong, M.; AchyuthaRao, *S. Pure* Appl. *Chem.* **1992,64, 361** and references cited therein.

tionalities, but are unfortunately unreactive toward **un**activated primary alkyl halides. Recently, we have found that a wide range of functionalized dialkylzincs $(FG^1R^1)_2Zn$ 1 can be prepared by an iodine-zinc exchange reaction and have demonstrated their utility for performing catalytic enantioselective additions to aldehydes.⁷ We wish now to report that the reaction of these functionalized dialkylzincs with Me₂Cu(CN)(MgCl)₂ (1 equiv) provides new copper reagents represented tentatively as (FG1- R1)2Cu(CN)(MgX)2.Me2Zn **2** which react under mild conditions $(-78^{\circ} \text{to } 0 \text{ °C}, 2\text{h})$ in polar solvents such as dimethylpropyleneurea $(DMPU)^8$ with a wide range of functionalized organic halides (FG^2R^2X) 3 providing polyfunctional cross-coupling products of type **4** in good yields (eq **1** and Table I). The coupling reaction shows a remarkable chemoselectivity allowing the presence of ester and cyano groups.

Also, functionalities like a terminal alkyne. 9 a nitroalkane,¹⁰ or a triflamide,¹¹ which are sensitive toward polar organometallics and readily deprotonated, $⁹⁻¹¹$ are not</sup> affected by the new weakly basic copper reagents **2** (see the preparation of **4e-g (71-87 9%**);Table I). Interestingly, benzylic bromides which do not react with FGRCu(CN)- ZnX undergo a very clean cross-coupling reaction with the new reagents **2** (see **4i-j).** The use of a polar solvent is required for a smooth reaction; however, DMPU8 can be replaced by N -methylpyrrolidone¹² to give comparable yields.

The performance of the transmetalation of the dialkylzincs 1 with $Me₂Cu(CN)Li₂$ ¹³ instead of $Me₂Cu(CN)$ -

(9) (a) Flahaut, **J.;** Miginiac, P. *Hela* Chim. Acta **1978,61,2276.** (b) Hall, **S.** E. ; Rowh, W. R. *J. Org. Chem.* **1982,47,4611.**

(10) Nitroalkanes undergo electron transfer with lithium-derived organocopper reagenta and are readily deprotonated by a variety of organometallic reagenta (pK. = **19):** (a) Seebach, **D.;** Colvin, E. W.; Lehr, F.; Weller, T. *Chimia* **1979, 33, 1.** (b) Hansson, A. T.; Nihon, M. *Tetrahedron* **1982,38,389.** (c) Jubert, C.; Knochel, P. *J. Org. Chem.* **1992,57, 5431.**

(11) Triflamides are deprotonated by K₂CO₃: Hendrickson, J. B.; Bergeron, R.; Giga, A.; Sternbach, D. *J. Am. Chem. Soc.* 1973, 95, 3412. **(12)** Cahiez, **G.;** Marquais, **5.** *Synlett* **1993, 45.**

(13) Lipshutz, B. H.; Wilhelm, R. **S.;** Kozlowski, J. A. *Tetrahedron* **1984, 40, 6005.**

(14) Typical Procedure: Preparation **of** 10-Nitro-9-phenyldeeyl acetate **(40.** A three-necked flask equipped with astirring **bar,** a rubber septa, and an argon inlet was charged with CuCN (5 mg) and 1-acetoxy-4-iodobutane (2.42 g, 10 mmol). Et₂Zn (2.0 mL, 20 mmol) was added, and the reaction mixture was stirred for 5 h at 50 °C. The excess Et₂Zn and formed dry THF **(5 mL)** was added with stirring. The suspension was allowed to settle, and the supematant liquid was transferred to a THF solution solution was warmed to 0 °C and then cooled to -78 °C, and DMPU (5 **mL)** was added, followed by **giodo-l-nitro-2-phenylheurne (1.00** g, **3** mmol). The reaction was allowed to warm slowly to $0 °C$ and stirred for 2 h. After workup, drying over MgSO₄, and evaporation of the solvents, the residual oil was purified by flash column chromatography (etherhexanes **(1:4))** yielding **4f (0.80** g, **83%** yield) **as** a clear oil.

⁽¹⁾ (a) Corriu,R. J. P.; Masse, J.P. *J. Chem.* SOC., *Chem.* **Commun.1972, 144.** (b) Tamao, K.; Sumitani, K.; Kumada, M. *J.* Am. *Chem.* **Soc. 1972, 94,4374.** (c) Baba, **S.;** Negishi, E. *J.* Am. *Chem.* SOC. **1976,98,6729.** (d) Negishi, E.; King, A. 0.; Okukado, N. *J. Org. Chem.* **1977.42,1821.** (e) Kumada, **M.** *Pure* Appl. *Chem.* **1980,52,669. (f)** Jabri, N.; Alerakie, A.; Normant, J. F. Tetrahedron Lett. 1981, 22, 959. (g) Negishi, E. Acc.
Chem. Res. 1982, 15, 340. (h) Hayashi, T.; Kumada, M. Acc. Chem. Res.
1982, 15, 395. (i) Suzuki, A. Acc. Chem. Res. 1982, 15, 178. (j) Stille, J.
K. Pure **(n)Farina,V.;Krishnan,B.J.Am.Chem.Soc.1991,113,9585.** (0)Kalinin V. N. *Synthesis* **1992,413.** (p) Mitchell, T. N. *Synthesis* **1992,803.** (9) Hatanaka, Y.; Hiyama, T. *Synlett* **1991,845.**

⁽⁷⁾ (a) Rozema, M. J.; AchyuthaRao, **S.;** Knochel, P. *J. Org. Chem.* **1992,57,1956.** (b) Brieden, W.; Ostwald, R.; Knochel, P. *Angew. Chem.* **1993,105,629;** *Angew. Chem., Znt. Ed. Engl.* **1993,32,582.**

⁽⁸⁾ (a) Mukhopadhyay, T.; Seebach, **D.** *Helu.* Chim. Acta **1982,66, 385.** (b) Seebach, **D.;** Beck, A. K.; Mukhopadhyay, T.; Thomas, E. *Helu. Chim.* Acta **1982, 65, 1101.** (c) Bengtason, M.; Liljefore, **T.** *Synthesis* **1988,250.**

^a Isolated yields of analytically pure products. ^b Yield obtained using the copper reagent (FGR)₂Cu(CN)Li₂·Me₂Zn.

 $(MgX)_2$ led to inferior results (Table I $(4a-b)$). It is also noteworthy that no methyl transfer is observed with the Grignard-derived copper reagents **2.** Finally, although secondary dialkylzincs are not available by the iodinezinc exchange reaction, the reaction of c-HexZnI with MeMgCl followed by the addition of $Me₂Cu(CN)(MgCl)₂$ provides a copper reagent which transfers selectively the c-Hex group to alkyl iodides in satisfactory yields (68 *5%* yield; eq **2).** The extensive formation of elimination products is observed if secondary iodides are used **as** electrophiles.

> 1) MeMgCl c-HexZnl **2**) Me₂Cu(CN)(MgCl)₂ **C-Hex** COOEI (2) **4k: 68** % COOE $3)$ -78 °C to 0 °C, 2 h

In summary, we have developed a highly chemoaelective cross-coupling reaction between new functionalized primary or secondary zinc-copper reagents **2** and functionalized primary alkyl halides.14 Extensions of the method are currently being investigated in our laboratories.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Deutsche Forschungsgemeinschaft (SFB **2601,** and the Fonds der Chemischen Industrie for the generous support of this research. We thank the SCHERING AG (Witco Bergkamen) for the generous gift of chemicals.

Supplementary Material Available: Characterization data for new compounds 4a-k **(4** pages). **Thie** material **is** contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the **ACS;** see any current masthead page for ordering information.